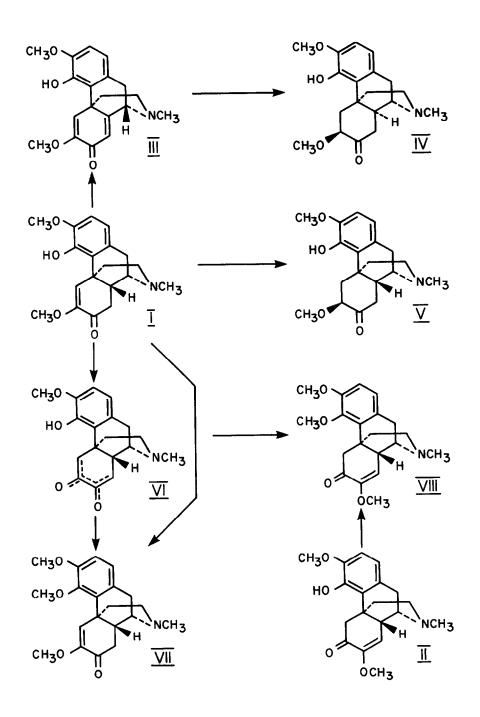
OCOBOTRINE AND 14-EPISINOMENINE. NEW TRANS-MORPHINANE ALKALOIDS OF OCOTEA BRACHYBOTRA

Vittorio Vecchietti*, Cesare Casagrande and Giorgio Ferrari Simes Research Laboratories, 20161 Milan, Italy

(Received in UK 15 March 1976; accepted for publication 29 March 1976)

The plants belonging to the family Lauraceae are a rich source of alkaloids, particularly those of the proaporphine and aporphine types¹.


On the other hand, the alkaloids of the morphinane type are not usually found in this family. Only in the genus Cassytha² a morphinandienone, i.e. sinacutine <u>III</u>, was observed.

In a Brazilian lauracea, [Ocotea brachybotra (Meiss.) Mez] we have found four morphinane-alkaloids, including two already known, sinacutine and pallidine, and two new ones, ocobotrine I and 14-episinomenine <u>II</u> to which we have ascribed the unusual trans-B/C morphinane-structures.

<u>I-Ocobotrine</u>, m.p. 97-99°C (AcOEt/Et₂O) $C_{19}H_{23}NO_4$. $\frac{1}{2}CH_3COOC_2H_5$; the solvent of crystallization was removed by drying in vacuo with heating to yield an amorphous product: $\begin{bmatrix} \infty \\ D \end{bmatrix}^{20} -93°$ (c = 1 in CHCl₃); $\lambda \frac{MeOH}{max}$ 264 (log \notin 4.01) 210 (log \notin 4.52); IR (CHCl₃) 3500, 1680, 1620; δNMR (CDCl₃) 7.76 (1H, s, 5-H), 6.75 and 6.73 (1H each, s, 1-H and 2-H) 6.35 (1H, br.s; exchange with D₂O, 4-OH) 3.90 (3H, s, OCH₃) 3.65 (3H, s, OCH₃), 2.35 (3H, s, NCH₃); m/e 329 (M⁺, 55%) 314 (100) 286 (24) 271 (4) 192 (25) 189 (10) 157 (8) 115 (10). <u>I</u>.HCl m.p. 296-7°C (MeOH).

These data suggest a 8,14-dihydromorphinandienone structure.

The data reported for similar structures (8,14-dihydrosalutaridine ³ and isosinomenine⁴) are very similar, excepting the c.s. value of the C-5 vinyl proton ($\int 6.76$). A similar value of the vinyl proton at C-5 ($\int 7.56$) is found only in the related dienones (sinacutine and salutaridine).

In the molecular models of these dienones, a marked interaction between 5-H and 4-OH is observable, which accounts for the downfield shift. With 8,14-dihydrog structures this interaction is possible only in B/C-trans structures. Furthermore, the mass spectrum of \underline{I} in comparison with those reported for 8,14-dihydrosaluta-ridine³ and isosinomenine⁶ shows two important features, i.e. the lack of the fragment at m/59 and the strong intensity of M⁺, which is 55% of the parent peak. Both these properties are characteristic of trans-morphinane structures⁷.

Chemical correlations further confirmed the suggested structure. Ocobotrine--O-acetate was selectively brominated at C-8 with Br₂ in a mixture of CF₃COOH and CH₃COOH containing dry HBr, and the bromoketone [m.p. 166-168°C (ethyl ether); 8-H, $\oint 5.64$, d, J 12 Hz] was simultaneously dehydrohalogenated and deacetylated with DBU yielding sinacutine <u>III</u>, identical to the natural product (m.p., t.l.c., $[cc]_D$ and NMR). Furthermore, <u>I</u> was hydrogenated with Pd in ethyl acetate to a mixture of two dihydroderivatives epimer at C-6, which after equilibration with methanolic KOH gave the more stable isomer <u>V</u>, having equatorial 6-OCH₃ group⁸. Compound <u>V</u> [m.p. 210-212°C; $[cc]_D^{20}$ -19.6° (c = 1 in CHCl₃)] proved different from tetrahydrosinacutine <u>IV</u> [m.p. 189-191°C; $[cc]_D^{20} + 68.8°$ (c = 1 in CHCl₃)] obtained from sinacutine by similar hydrogenation and equilibration. As hydrogenation of morphinandienones is known⁹ to occur on the less indereded side of the C ring giving products having B/C cis-configuration, <u>V</u> and <u>IV</u> should differ only in the C-14 configuration. Moreover, the mass spectra confirmed the proposed structures, the fragment at m/e 59 being present in <u>IV</u> with a relative abundance higher (27%) than in <u>V</u> (0.7%).

<u>II-14-episinomenine</u>; m.p. 118-120°C (benzene), $C_{19}H_{23}N_{4} \cdot \frac{1}{2}C_{6}H_{6}$; after drying in vacuo: $\begin{bmatrix} oc \\ D \end{bmatrix}_{D}^{20} -40^{\circ}$ (c = 1 in CHCl₃); λ_{max}^{MeOH} 272 (log E 3.87) 211 (log E 4.41); IR (KBr) 3500, 1675, 1625. <u>II.</u> HCl. 2 H₂O m.p. 200-210°C (MeOH).

The mass spectrum was almost indistinguishable from that of sinomenine⁶ as was the NMR from that of 14-episinomenine, prepared⁴ by alkaline isomerization of sinomenine. I is hydrolyzed at C-6 with 5% HCl, yielding <u>VI</u> as a mixture of enols; these are then methylated with $(CH_3)_2SO_4$ and t-BuOK¹⁰, giving <u>VII</u> and <u>VIII</u>. The main product <u>VIII</u> [(m.p. 133-134°C; $[\sigma C]_D^{20}$ -33.3° (c = 0.35 in CHCl₃)] proved identical (m.p., t.l.c., $[\sigma C]_D$) to 0-methyl-14-episinomenine obtained from <u>II</u> with CH_2N_2 , whilst the minor product <u>VIII</u> (m.p. 123-124°C; $[\sigma C]_D^{20}$ -86° (c = 0.5 in CHCl₃) was identical (m.p., t.l.c., $[\sigma C]_D$) to 0-methyl-ocobotrine obtained from <u>I</u> with $(CH_3)_2SO_4$ and t-BuOK.

REFERENCES

- R. Hegnauer, in "Chemotaxonomie der Pflanzen", vol. 4; Birkhäuser Verlag, Basel & Stuttgart, 1966, pp. 350-381
- S.R. Johns, J.A. Lamberton and A.A. Sioumis, <u>Aust. J. Chem.</u>, <u>19</u>, 2331 (1966)
- L.J. Haynes, G.E.M. Husbands and K.L. Stuart, <u>Chem. Commun.</u>, 15 (1967);
 <u>J. Chem. Soc. (C)</u>, 951 (1968)
- 4. D.H.R. Barton, A.J. Kirby and G.W. Kirby, J. Chem. Soc. (C), 929 (1968)
- 5. K.L. Stuart, <u>Chem. Review</u>, <u>71</u>, 47 (1971)
- D.M.S. Wheeler, T.H. Kinstle and K.L. Rinehart, <u>J. Am. Chem. Soc.</u>, <u>89</u>, 4494 (1967)
- 7. A. Mandelbaum and D. Ginsburg, Tetrahedron Letters, 2479 (1965)
- 8. ref. 5, pp. 50-51
- 9. ref. 3 and W. Döpke, H. Flentje and P.W. Jeffs, Tetrahedron, 24, 4459 (1968)
- 10. K. Goto and J. Yamamoto, Proc. Japan Acad., 34, 619 (1958)